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In an experimental study of the vortex-induced oscillations of a long flexible circular 
cylinder, the observed stationary amplitudes describe an hysteresis loop partially 
different from earlier studies. Each branch of the loop is associated with a vortex 
shedding mode and, as a jump from one branch to the other occurs, the phase 
difference between the cylinder displacement and the vortex shedding undergoes an 
abrupt change. The critical flow velocities at which the jump occurs concur with the 
flow visualization observations of Williamson & Roshko (1988) on the vortex shedding 
modes near the fundamental synchronization region. Impulsive regimes, obtained at a 
given flow velocity with the cylinder initially at rest or pre-excited, and progressive 
regimes resulting from a variation of the flow velocity, are examined. The occurrence 
of bifurcations is detected for a flow velocity range in the case of the impulsive regimes. 
The coordinates of the bifurcations define a boundary between two vortex shedding 
modes, a boundary that verifies the critical curve obtained by Williamson & Roshko 
(1988). The experimental set-up of this study simulates half the wavelength of a 
vibrating cable, eliminates the end effects present in oscillating rigid cylinder set-up and 
has one of the lowest damping ratios reported for the study of this phenomenon. 

1. Introduction 
Since long flexible cables are commonly used in engineering applications, especially 

in suspension bridges and electrical power transmission lines, there are numerous 
studies of their interaction with a fluid flow and the resulting oscillatory instabilities 
(see the reviews by Parkinson 1989; Bearman 1984; Sarpkaya 1979; and Blevins 1977, 
p. 363, among others). When exposed to wind, cables of circular cross-section, as any 
aerodynamically bluff body, are characterized by a flow separation from their surface 
and a wake carrying shed vortices downstream. The formation of these vortices results 
from the rollup of the unstable shear layers generated at the flow separation and this 
phenomenon induces an alternating pressure loading on the cylinder surface and a 
transverse force at frequency f,,. For a long stationary circular cylinder, the vortex 
shedding frequency, f,,, matches the frequency & defined by S, the Strouhal number 
( S  = & D/ Vwhere Vis the oncoming wind velocity and D the geometrical characteristic 
of the cylinder). As the vortex shedding frequency approaches the natural frequency of 
a given flexible circular cylinder, a resonant response tends to develop freely and, for 
a narrow range of air velocities, can reach amplitudes of the order of 1 D while the 
vortex shedding frequency locks-in to the cylinder frequency. This synchronization is 
part of a nonlinear phenomenon featuring an hysteresis loop. 

The experiments on free vortex-induced vibrations conducted by Feng (1968) are 
well known, as are those on forced vibrations by Bishop & Hassan (1964b). In these 



482 D. Brika and A .  Laneville 

two sets of experiments, the observed hysteresis loop is characterized by simultaneous 
jumps in the cylinder vibration amplitude (A) ,  in the lift and drag forces, as well as in 
the phase between the excitation and the cylinder displacement. The position of the 
jumps is influenced by whether the velocity U is increased from lower velocities or 
decreased from higher velocities (U = V/27rfD where f is the cylinder vibration 
frequency). This hysteresis loop can admittedly be attributed to nonlinear spring or 
damping behaviour : forced nonlinear vibrations governed by Duffing’s equation 
(Holmes & Rand 1976) can exhibit such an hysteresis loop. However, in an analysis of 
Feng’s results, Parkinson (1989) suggests that the hysteresis conditioning originates 
from the fluid system, therefore from the lift forces, not from the model elastic system. 
By modelling the fluid system by a nonlinear wake oscillator in combination with the 
equation of motion of a mass-spring-damper system, Hartlen & Currie (1970), Land1 
(1975) and Berger (1984) among others, have had some success in producing results 
qualitatively similar to those obtained experimentally. In spite of this relative success, 
the arguments invoked in establishing the wake oscillator are not altogether convincing 
(Sarpkaya 1979 and Parkinson 1989). 

From the analysis of flow visualization films of Den Hartog (1934), Meier- 
Windhorst (1939), Angrilli, Di Silvio & Zanardo (1974) and Griffin & Ramberg (1974), 
Zdravkovich (1982) observes the occurrence of a drastic change in the structure of the 
shed vortices as a phase jump takes place. Ongoren & Rockwell (1988a) observed more 
in detail this change in the vortical structure of the near wake on either side of the phase 
jump. 

Williamson & Roshko (1988), in the interpretation of their flow visualization results, 
also provide an explanation for the hysteresis loop in terms of a change in the 
configuration of the vortex wake. The phase jump is attributed to a sudden change in 
the wake patterns, specifically in the modes denoted as 2 s  and 2P. The 2s mode is 
associated with flow regimes in which, for each half-cycle, a vortex is fed into the 
downstream wake, like Khrmhn vortex shedding, while the 2P mode is associated with 
flow regimes in which vortex pairs are formed in the near wake and ‘convect laterally 
outwards from the wake centerline’. These experimental results suggest that the 
hysteresis has its source in a fluid mechanic phenomenon. 

Simulations of the eolian vibrations of cables were performed mostly with a rigid 
cylinder. Very few attempts have been made to simulate half the wavelength of the 
vibrating cable in a wind tunnel. Rawlins (1983) reports such wind tunnel tests and 
measurements of the aerodynamic damping. Since the end effects associated with the 
oscillations of an elastically mounted rigid cylinder close to a wall can be a source of 
flow non-uniformities, a more appropriate approach might be to use a flexible cylinder 
with the nodes of its first free-free vibration mode located at the tunnel walls in order 
to simulate the eolian oscillations of long cables. Half of the stationary waves present 
in the cable motion are then well reproduced. The work reported here deals with such 
an experimental simulation and examines the hysteresis under a different set of 
conditions. The results are compared to those of Feng (1968) and Bishop & Hassan 
(1964a, b) and then discussed in the light of the different vortex shedding patterns 
observed by Williamson & Roshko (1988). The present results confirm that the 
hysteresis loop is a fluid-mechanic phenomenon. 

2. Experimental set-up and methodology 
The experimental set-up shown in figure 1 is similar to the one used by Rawlins 

(1983). It consists of a long circular tube with characteristics: external diameter, D = 
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FIGURE 1 .  Schematic view of the experimental set-up: 1, steel flexible blade; 2, model; 3, 4, system 
adjustment blocks; 5 ,  supporting beam; 6, concrete block; 7, clamp attachment; 8, wind tunnel wall; 
9, streamlined shroud. 
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FIGURE 2. Mode shape of test model compared to the sinusoidal mode: -, first free-free mode 

shape; -----, sine mode shape. 

33.4 mm; internal diameter, d = 26.6 mm; total length, L = 3.313 m; mass per unit 
length, mL = 0.864 kg/m; density ps = 4 m,/n(D2 - d 2 )  = 2697 kg/m3. 

The tube is suspended by thin steel flexible blades at the nodal points of its first 
free-free vibration mode and spans horizontally the complete wind tunnel square test 
section (1.83 x 1.83 m) in its centre. The total length, L, is chosen to fix the nodal points 
at the wall. The resultant natural frequency for this mode is 

f, = 17.58 Hz. 
In order to isolate the vertical suspension blades from the wind tunnel airflow, a 

cover with a 40 mm hole allowing for the cylinder’s way is mounted on the tunnel wall. 
The net length of the cylinder exposed to the airflow, L,, is then 1.76 m giving an aspect 
ratio L J D  = 52.7. 

The suspension system made of wide spring steel blades allows a transversal motion 
of the cylinder but prevents its motion in the streamwise flow direction. 

This experimental approach allows the exposed cylinder portion to oscillate with a 
quasi-sinusoidal form and is a closer simulation of cable vibrations. The equation for 
this first mode is 

with K = 4.73, (T = 0.9825, X the longitudinal distance from one end of the model, and 
A the single amplitude at midspan. 

The form is compared to the sinusoidal form in figure 2 and the largest difference in 
Y / A  is 2.9%. 

The cylinder oscillations are measured with a B&K 4393 accelerometer (mass = 
2.4 g) located on the cylinder at 45 mm from the nodal point outside the wind tunnel. 
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The accelerometer output is fed to a B & K  2635 charge amplifier to obtain the 
vibration amplitude. The spectral analysis of the response is performed on a B&K 
2032 frequency analyser. 

For tests at a given air velocity, the cylinder vibrations are obtained either from rest 
or from an artificial excitation. The shaker (B&K 4809), which can be quickly 
uncoupled from the model, is driven by a power amplifier (B & K 2706) coupled to a 
wave generator delivering a sinusoidal signal matching the cylinder natural frequency. 
The mechanical excitation is applied at a point on the cylinder located 130 mm from 
the nodal point outside the tunnel wall. 

To establish the vortex regime in the near wake of the oscillating cylinder, smoke is 
used to visualize the flow. Video recordings are taken as the cylinder near wake is 
'frozen' by a stroboscope (strobolume GR 1540) triggered by the accelerometer signal. 
The strobolume is equipped with an oscillator/delay unit allowing the adjustment of 
the cylinder position. 

The vortex shedding frequency is obtained with a hot-wire anemometer (one 
component normal to the flow) located at the model midspan, 1D downstream and 1D 
below the stationary cylinder axis. The phase difference between the hot-wire output 
and the accelerometer signal is also recorded. The measured phase difference remains 
a relative characteristic since the anemometer is stationary and at a distance from the 
cylinder in motion. The measured phase difference is then influenced by the cylinder 
position and the air velocity via a time delay. This can be avoided only if the transducer 
is flush mounted on the cylinder surface and compensated for inertial effects. The 
model used in this study does not allow for such a set-up. For a fixed hot wire, this time 
delay varies inversely with the air velocity, or the velocity at which the vortices are 
transported in the wake. The phase results may be corrected according to 

where, for the present set-up, A@R = 34", UR = 0.78, (A/D>, = 0, 

The first term on the right-hand side includes all the time lags associated with the 
electronics and the tubing length as well as the reference phase lag when the cylinder 
is practically at rest and not experiencing the beating phenomenon. This term is 
evaluated for U = 0.78, the synchronization onset velocity, and A@ is assumed zero 
under these conditions. The second term takes care of the effect of air velocity change 
and the third takes into account the vertical displacement of the cylinder. The 
correction formula is empirical and its derivatives were determined from experimental 
data (Brika 1990). 

The upstream air velocity is measured, and so is the cylinder base pressure with 
standard pressure transducers. The test conditions were : upstream air velocity, 1.6 d 
V d 5.5 m/s; Reynolds number, 3400 d Re < 11 800. 

The system damping is obtained by measuring the logarithmic decrement 6, as the 
cylinder is vibrating in still air. The damping measured in these conditions includes the 
structural damping and the aerodynamic damping associated with the drag of the 
oscillating cylinder. It can be divided in a portion, S,, a base value which is independent 
of the vibration amplitude and S,, a portion proportional to the square of the vibration 

(3) 
amplitude : 

6, = S,+S,. 
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FIGURE 3. The system damping in still air. (a) Record of the cylinder displacement in still air; (b) total 
logarithmic decrement us. dimensionless midspan amplitude AID. 0, test A; +, test B; A, test C; 
-, fitting curve. 

The damping portion, S,, can be estimated from the recordings of the cylinder 
vibrating at small amplitude. It is made up of the structural damping, a,, and the 
‘ aerodynamic ’ viscous damping : 

4 x d 2 p  1 
(Re,): ps 1 - (d/D12’ 

6, = a,+-- (4) 

where Re, = 2xP = w, D a / v  = 8326, w, = 2xfn, is the Stokes number, v the fluid 
kinematic viscosity, and p the fluid density. 

The second term on the right-hand side comes from Batchelor (1968, p. 357), and has 
a value of 2.32 x by an 
extrapolation of the curve of figure 3). This basic logarithmic decrement, a,, is of the 
same order as that for a similar system (6.6 x 

Since the lengths of the cylinder outside the wind tunnel during the tests are in still 
air, the damping due to these lengths becomes part of the system damping. For an 

which accounts for 45% of 6, (6, = 5.2 x 

used by Rawlins (1983). 
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oscillating cylinder, the portion of aerodynamic damping which is a quadratic function 
of the amplitude (Sarpkaya 1979), can be expressed per unit length as: 

8, = 2.12-(A/0)2 P 
P S  

(5) 

and after an integration over L, the cylinder length, one gets for PD, the power 
dissipated by this portion of the aerodynamic damping, taking into account the node 

where 

= 2LA4K,(0.3164+0.1078), (6) 

2.5 K, = -pw3 
37t n’ 

The damping due to the cylinder lengths external to the wind tunnel and vibrating in 
this given mode accounts for 75% of S, in free air; this agrees with the amount 
obtained by Rawlins (1983). The system damping with the model exposed partly to the 
wind tunnel flow is then 

S,,,,,, = S, +0.758,. (7) 
In the range 0 < A / D  < 0.52, the aerodynamic logarithmic decrement, as shown in 

figure 3, varies between 0 and 9.75 x lop4 and the damping ratio 5 of the system, 
between 0.83 x lop4 and 2 x lop4. This damping is one order of magnitude smaller than 
that of the system used by Feng (1968). In terms of the Scruton number, Sc, defined 
as 27c5/n with n = pD2/2m2 = 0.00031, it represents a variation from 1.69 at small 
amplitudes ( A / D  - 0) to 4.06 for the maximum displacement ( A I D  - 0.52). For this 
last amplitude, the Scruton number in the present tests is 15% higher than that for 
Feng’s system with light damping (Sc = 3.52). The Scruton number is a measure of the 
ability of lightweight structures to damp flow-induced vibrations. Large Scruton 
numbers are generally associated with small-amplitude flow-induced vibrations. In the 
present calculation of the Scruton number, an equivalent mass per unit length, m;, is 
adopted to take into account that the energy extracted by the portion of the cylinder 
vibrating in a sinusoidal mode shape within the wind tunnel is distributed over its 
whole length. The equivalent mass per unit length is then defined as: 

mL * - - mL 1” Y 2  dX/ rn2 Y 2  dX = 2.37mL, 

where Y is given by equation (1), the first free-free vibration mode shape. 
The tests are performed using one of the following four procedures: (i) fixed air 

velocity and cylinder released from rest; (ii) fixed air velocity and cylinder artificially 
excited and released ; (iii) with the cylinder in its steady-state amplitude, small 
increment of the air velocity; (iv) same as (iii) but small decrement of the air velocity. 
Procedures (i) and (ii) are referred to as ‘impulsive regimes’ and procedures (iii) and 
(iv) as ‘progressive regimes’. 

Most of the results presented will be for steady-state amplitudes of oscillations. The 
blockage ratio of the model to the test section is small, of the order of 1.8 % but the 
air velocity is corrected according to the method proposed by Pankhurst & Holder 
(1 962). 
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FIGURE 4. The beating phenomenon observed at the synchronization onset (V = 0.74). 

3. Results 
The experimental results will be presented according to the test procedures, i.e. 

impulsive regimes and progressive regimes. 
For air velocities U lower than 0.78 or larger than 1.2, where U is the non- 

dimensional variable U = V/2nfD, the cylinder remains stationary and the vortex 
shedding frequency is represented by f,, the Strouhal frequency. The frequency f i s  the 
cylinder oscillating frequency, nearly f, in the present set-up. 

3.1. Progressive regimes 
For air velocities near U = 0.78, the synchronization onset velocity, the cylinder 
vibration amplitude shows a modulation, typically a beating which indicates the 
proximity off, to f ,  (see figure 4). 

Figure 5 shows traces of the vibration amplitude, the phase difference between the 
vortex shedding and the cylinder oscillations, and the base pressure, as the air velocity 
is progressively varied (procedures iii and iv). In this figure, the recorder is stopped 
each time the air velocity is incremented (parts a and b of the figure) or decremented 
(part c). 

Parts (a)  and (b) indicate an increasing vibration amplitude with increasing air 
velocity, a tendency followed until the event of a change in phase between the vortex 
shedding and the cylinder displacement. Past this event, an increase of the air velocity 
produces a small reduction in the cylinder amplitude. The record of the phase angle 
shows some fluctuations in the earlier stages of synchronization and as the flow velocity 
is increased, the phase angle varies slightly, up to three peaks, announcing an 
approaching change of phase at U E  1 (or competition between modes of vortex 
shedding). Past the change of phase, the phase angle does not show as a fluctuating 
component as for U < 1. The trace of the base pressure signal shows a progressive 
variation, initially with small fluctuations and then with increasing fluctuations as the 
change in phase is approached. Past the change in phase, the base pressure signal, like 
the phase angle, fluctuates much less. These results, as expected, indicate that the wake 
organization plays a major role in this phenomenon. 

Figure 5(c) shows the case of procedure (iv) in which the velocity is decreased 
progressively. As the initial condition, U > 1.0, is modified, a reduction of U produces 
a small increase in the cylinder vibration amplitude, down to a change in phase where 
the amplitude is reduced by almost 60 YO. With further reductions of the air velocity, 
the cylinder amplitude reduces. Prior to the phase change, the phase angle signal 
remains very regular while, for lower velocities, this signal is very fluctuating. The base 
pressure signai shows almost no fluctuations as the air velocity is decreased and this 
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FIGURE 5 .  Traces of the vibration amplitude A ,  the phase angle @ and the pressure difference 
(P, - P,) for progressive regimes : (a) and (b), increasing velocity; (c) ,  decreasing velocity. 
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FIGURE 6. (a) The phase angle @, (b) the ratio of the vortex shedding frequency to the system natural 
frequency f,,/f, and (c) the relative vibration amplitude AID versus the relative velocity U :  0, 
increasing velocity; Sr, decreasing velocity; 0, increasing velocity with large steps. 
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behaviour differs from the results obtained with procedure (iii) shown in parts (a) and 

The steady-state results for the progressive regimes, i.e. the phase angle @, the ratio 
of the vortex shedding frequency to the cylinder natural frequency and the relative 
amplitude of vibration are presented in figure 6 as functions of the velocity U, and will 
be discussed according to the incremental value of U. The time-mean base pressure 
coefficient will also be presented. 

3.1.1. Small increments of U 
For small increments of U,  AU w 0.02 (shown as circles), the cylinder begins to 

oscillate at U w 0.78 and as the air velocity is incremented towards U w 1, its amplitude 
grows rapidly following the upper branch of an hysteresis loop. For U z 1, the upper 
critical velocity (UCV), the reduced amplitude is 0.53 and drops abruptly to 0.38 onto 
the lower branch of the hysteresis loop. A further increase of the air velocity brings 
about a reduction of the amplitude. From U = 1.02 to 1.20, this reduction is not as 
severe as in the range 1.20 < U < 1.30, for which the steady-state conditions are 
obtained after a long time. Past U = 1.30, the vortex-induced vibrations disappear. 

Figure 6(b) shows the phenomenon of synchronization in the range 0.78 < U < 1.2 
as the cylinder frequency modulates the vortex shedding frequency. In this range of 
velocity, the vortex shedding frequency, although very close to the cylinder natural 
frequency, varies slightly (0.15 %) as indicated by the inset. Outside the lock-in region, 
the vortex shedding frequency matches the Strouhal frequency. The earlier drop in 
amplitude observed at Uw 1 is accompanied by a jump of 75" in the phase angle. 
Again these results indicate that the wake organization plays a dominant role in vortex- 
induced vibrations. 

(b). 

3.1.2. Small decrements of U 
For decreasing velocities from U > 1.3 (star symbols), it can be observed that the 

steady vibration amplitudes are similar to those for increasing U in the range U > 1. 
In the neighbourhood of the UCV, the amplitude ceases to follow the curve defined 
by the increasing velocity tests; it does not jump from 0.38 to 0.53, and the phase 
change does not occur. The air velocity has to be reduced to U = 0.89, the lower critical 
velocity (LCV), for this phase change to occur, accompanied by a 57% reduction of 
the amplitude (AID decreasing from 0.39 to 0.17). Additional tests (Brika 1990) have 
shown the LCV to be in the range 0.87 < U < 0.89. Lock-in is present for the whole 
range 0.78 < U < 1.2. The plateau defined by the amplitude of vibration A / D  = 0.39 
(& 1.7% in the region 0.89 < U < 1.0) intercepts the curve obtained with small 
increments of U at the coordinates AID = 0.39 and U = 0.96. 

3.1.3. Large increments of U 
If AU, the increment of the velocity, is increased by a factor of two near the onset 

of synchronization, the resulting data for the progressive regime (lozenge symbols in 
figure 6) no longer correspond to the observations in $3.1.1. As the air velocity U is 
increased, the data follow the common branch of the loop up to U = 0.87 and then 
jump to the lower branch of the loop, without accessing the upper branch for any 
larger value of U. This jump is also accompanied by a phase change. This behaviour, 
observed in few cases, indicates that close to the lower critical velocity, the flow regime 
associated with the upper branch becomes susceptible to velocity perturbations (AU - 
0.03) and surrenders to the flow regime associated with the lower branch. 
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FIGURE 7. (a) The base pressure coefficient Cp, and (b) the corresponding vibration amplitude AID 
as functions of the velocity U :  0, increasing velocity; b, decreasing velocity; -, stationary 
cylinder with very low free-stream turbulence and polished cylinder surface (Chen 1972) ; ------, 
stationary cylinder with high free-stream turbulence and very rough cylinder surface (Chen 1972). 



Vortex-induced vibrations of a flexible circular cylinder 493 

1.8 

1.6 

1.4 

-cpb 1.2 

1.0 

0.8 

0.6 

0 0.1 0.2 0.3 0.4 0.5 

AID 
FIGURE 8. The relationship between the base pressure coefficient C,, and the dimensionless 

amplitude AID (symbols as in figure 7). 

3.1.4. Base pressure coefficient C,, 
Figure 7 shows the data from a limited series of tests in which the base pressure is 

measured by a small 2 mm diameter tube fixed to the most downstream point of the 
cylinder at its midspan. The protuberance resulting from this tube did not affect 
significantly the vibration amplitudes when compared to the amplitudes obtained with 
the bare cylinder. The base pressure coefficient, CPb, is given by 

where Pb and P, are respectively the base pressure and the static pressure of the 
oncoming flow. As for the stationary oscillations, an hysteresis is present in the Cpb( U )  
curve with its discontinuities concurring with the jumps in the amplitude curve. 

The base pressure coefficient is significantly larger than in the case of the stationary 
cylinder as observed by Stansby (1976). Figure 8 shows the C,, (AID) curve and 
supports the argument that the hysteresis observed during synchronization has its 
roots in the flow regime. 

3.2. Impulsiue regimes 
These regimes are obtained when, for a fixed air velocity U,  the flexible cylinder is either 
released from rest or externally excited by a shaker at an amplitude AID of the order 
of 0.85 and then released. The results for the steady-state amplitudes are compared to 
the results for the progressive regimes in figure 9. 
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FIGURE 9. The steady-state vibration amplitude AID of the impulsive regimes as a function of the 
velocity U compared to the results of the progressive regime: *, from rest; 0, from a pre-excited 
amplitude; -----, progressive regime. 

3.2.1. Free oscillations from rest (procedure i) 
For a cylinder released from rest and exposed to a given U,  the steady-state vibration 

amplitude (figure 9, star symbols) is unique and its value is defined by the lower branch 
of the hysteresis loop if U is larger than or equal to the LCV ( U  = 0.88) or by the upper 
branch if Uis smaller than the LCV. Figure 11 (a)  shows a typical record for U = 0.915. 

For velocities larger than the synchronization onset velocity ( U  = 0.78) and smaller 
than the LCV, the recordings of the amplitude build-up from rest show intriguing 
behaviour (figure 10): while the system tends towards a first but unavailable final state 
on an imaginary extension of the lower branch (U < LCV), it suddenly departs, at a 
point defined by a break in the envelope curve, towards a second and available steady 
state of the upper branch. These bifurcations, or breaks in the envelope curves are 
accompanied by an abrupt change in the phase angle and indicate again a change in 
the wake flow regime. 

3.2.2. Free oscillations with pre-excitation (procedure ii) 
The steady-state amplitudes of these tests are shown by the circle symbols in figure 

9. If U is smaller than the LCV, the cylinder stationary amplitude follows the upper 
branch of the hysteresis loop. When U > 0.96, the stationary oscillation amplitudes are 
described by the lower branch of the hysteresis loop. 

In the narrow range of velocity 0.88 (LCV) 9 U d 0.95, there are two possible 
steady-state amplitudes for a given air velocity with this procedure. 

Figure 11 shows some typical traces of the amplitudes as functions of time at U = 
0.92. Figure 11 (a)  shows the case of the cylinder starting from rest and figure 11 (b-d), 
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FIGURE 10. Breaks at different levels of the vibration amplitude build-up from rest and the associated 
phase change @ (U = 0.87). Upper trace, cylinder displacement; lower trace, phase angle @. 
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F~GURE I I .  Records showing the two possible steady-state amplitudes for the velocity U = 0.92 
obtained under different conditions: (a) from rest; (b), (c)  and (d )  with pre-excitation. 

the case of the cylinder externally excited and released. Figures 11 (a) and 11 (b) indicate 
the same steady-state amplitudes for the two different procedures while the comparison 
of figure 1 1 (b) with 11 (c) shows that the final steady-state amplitude is not unique for 
the same procedure. Finally figure 11 ( d )  shows another intriguing behaviour (observed 
uniquely at this velocity): while the system appears to have settled at a first stationary 
amplitude which is identical to part (b), a break in the envelope curve occurs and the 
system converges towards the second stationary amplitude which happens to be 
identical to part (c). Note that the velocity is constant for all the results reported in 
figure 11. 

3.2.3. Build-up time to stationary oscillations 
For the impulsive regimes, it is observed that the time or the number of cycles 

required for the aeroelastic system to achieve steady-state oscillations depends of 
course on the initial amplitude and air velocity U, but also follows two different trends. 
Figure 12 shows for each steady amplitude AID (circle symbols), the build-up time 
(triangle symbols) for the cylinder released from rest. For this lightly damped system, 
the build-up time increases exponentially with U during lock-in. In the range 0.78 d 
U 6 LCV, the steady-state amplitudes are reached within two minutes while in the 
range 0.88 d U ,< 1.2, the flow regime of the lower branch requires a significantly 
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FIGURE 12. Build-up time from rest to steady-state oscillations: A, A, build-up time; 

8, a, amplitude. 

longer time to be established, double at the common point U = 0.88, and over 50 
minutes at U = 1.2. 

Figure 13 shows the data for the cylinder externally pumped to about AID = 0.85 
and then released. Compared to the previous figure, it can be observed again that in 
the range 0.88 < U < 0.96, two stationary amplitudes of oscillations can exist and that 
their rate of decay is much less important than in the case of the cylinder released from 
rest. 

If two boundaries are defined, the first at the end of synchronization (U = 1.2, in this 
case) and the second at the jump of the lower branch (LCV), the resulting domain I can 
be associated with the flow regime of the lower branch, the 2P vortex mode, following 
the notation of Williamson & Roshko (1988). The domain I1 defined by 0.78 d U < 
LCV can be associated with the flow regime of the upper branch (2s vortex mode). It 
is interesting to observe that the flow regime 2P is limited to domain I while the 2 s  
regime, present in domain 11, also invades domain I up to U = 0.96. According to 
figure 13, when the 2s regime takes precedence over the 2P regime, its decay time 
is longer than in the 2P case while, according to figure 12 the build-up time for the 2P 
regime is always longer than that for the 2 s  regime. 

3.3.  Spanwise variation of CD 
Unlike experiments using a rigid cylinder, the present set-up allows for a spanwise 
variation of the cylinder amplitude. In order to investigate the spanwise coherence of 
the timing between the cylinder motion and the vortex shedding, the phase CD is 
measured at several axial positions. As shown in figure 14, the ratio of the local phase 
to the midspan value, @J@, is practically unity. In fact the phase remains constant 
within f5”. This suggests that the flow mode is not influenced in this case by the 
vibration amplitude and consequently that results obtained with a rigid cylinder should 
compare well with the present ones. The flow mode can also be expected to be more 
influenced by a variation of the flow velocity. 
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3.4. Flow visualization of the cylinder near wake 
Figure 15 shows photographs of the vortex patterns in the cylinder near wake at U = 
0.93 a velocity for which two steady-state amplitudes are possible. In both photographs, 
the flow is stroboscopically 'frozen' at the lower position of the cylinder vibration 
cycle. 

The upper photograph (a) is obtained as the cylinder vibrates at a steady amplitude 
located on the upper branch of the hysteresis loop. The flow mode is clearly a 2s mode 
and the vortex is shed from the upper cylinder surface. The lower photograph (b) shows 
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FIGURE 15. Photographs and sketches showing the two near-wake vortex patterns responsible for the 
hysteresis loop (U = 0.93, Re = 7350). (a) 2s mode (AID = 0.27); (b) 2P mode (AID = 0.40). Both 
photographs are taken at maximum negative displacement of the cylinder. 

the near-wake flow as the cylinder oscillates at a steady amplitude but on the lower 
branch of the hysteresis loop. In this case the 2P mode is apparent and the vortex is 
now shed from the lower side of the model. . 

By comparing the two photographs, it appears that for the 2P mode, the vortices 
expand more laterally than for the 2 s  mode while convecting downstream. This 
behaviour agrees with the description given by Williamson & Roshko (1988). 
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Additional flow visualizations show that the jump from the upper branch to the 
lower one is accompanied by an instantaneous change from the 2s mode to the 2P 
mode. 

In the case of bifurcation as the cylinder is released from rest (see figure lo), it was 
also observed that the initial flow mode, i.e. the 2P mode, converts suddenly to a 2s 
mode as the break in the amplitude envelope occurs. 

From these flow visualization results, it can be concluded that the upper branch of 
the hysteresis loop is associated with the 2s  mode, and the lower branch with the 2P 
mode. 

4. Comparison and interpretation of the data 
There are two approaches to the simulation of flow-induced vibrations : in the first, 

following Meier-Windhorst (1939), the oscillations of the cylinder mounted on an 
elastic system are allowed to develop freely with the flow and in the second, following 
den Hartog (1934), the oscillations are forced by an external system. The present study 
follows the Meier-Windhorst (1939) approach as did Feng in his simulation. Bishop & 
Hassan (1964b) adopted the den Hartog (1934) approach, as did Williamson & 
Rhosko (1988), Ongoren & Rockwell (1988a, b) and Stansby (1976). 

4.1. Comparison with Feng’s results 
In Feng’s experiments, a rigid length of a circular model was mounted in a wind tunnel 
on an external air-bearing support system with adjustable linear springs and damping 
system. The cylinder displacement and the surface pressures were recorded. Each 
surface pressure tap was connected to a length of polyethylene tubing that was brought 
out through the end of the cylinder and connected to a pressure transducer mounted 
outside the wind tunnel. A calibration was done to account for the attenuation and 
phase lag of the pressure signal during transmission through the tubing. 

Figure 16 (a, b) shows a comparison of the dimensionless amplitudes of vibration as 
a function of the velocity U. Although the damping value g differs by one order of 
magnitude in the two experiments, the Scruton numbers are similar. The maximum 
AID of the progressive regimes is almost identical (0.53) in both sets of data, as well 
as the upper branch of the hysteresis loop. The flow mode 2s associated with this upper 
branch does not appear influenced by the differences between these two experiments, 
i.e. the end conditions at the wall, the value of 5 (or the Scruton number) and the mode 
shape. The onset velocity associated with this upper branch occurs at 0.78 < U < 0.80, 
and the upper branch hysteresis jump at 1.01 < U c 1.02. 

For the lower branch of the hysteresis loop, there is only one point of agreement, 
that is the end of the vortex-induced vibrations at U M 1.28. The amplitudes (AID), the 
velocity U at which the jump occurs (0.89 in this experiment and 0.94 in Feng’s 
experiment) and the synchronization plateau (0.88 Q U < 1.18 in this experiment and 
0.97 < U < 1.12 in Feng’s) all differ significantly. Clearly the flow mode 2P associated 
with the lower curve of the hysteresis loop is influenced by the experimental set-up. 

For the impulsive regimes, both sets of data indicate that the upper branch of the 
hysteresis loop is not accessible for U > 0.96, but again, since this regime is related to 
the 2P flow mode, the data differ as in the progressive regimes. 

The data of figure 17(a, b) show a comparison of the phase angle between the flow 
characteristic (surface pressure or hot-wire transducers) and the cylinder displacement 
signals. In both sets, the jumps in the AID hysteresis loop are always accompanied by 
a sharp variation in @. Feng’s data show a variation of 35” (by extrapolation) as the 
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FIGURE 16. Comparison of the present results with those of Feng (1968) and Bishop & Hassan 
(1964b): (a) present study (symbols as in figure 6); (b) Feng's results: A, progressive regime; A, from 
rest; (c) Bishop & Hassan's results (drag force us. V ) :  0, increasing velocity; Q, decreasing velocity 
cf, = 2.923 Hz; AID = 0.403). 
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flow mode switches from 2s  to 2P and of about 60" for the 2P -+ 2s  jump. In the present 
data on the progressive regimes the phase angle varies by fi: 75" as the flow mode 
changes from 2s to 2P at U = 1.01 and by x 195" as the flow mode reverses from 2P 
to 2s at U = 0.89. In the cases of progressive regimes with large U increments and 
impulsive regimes, the jump from 2s to 2P mode can occur with a 190" variation in the 
phase angle (U = 0.87). It should be noted that the present data were averaged over 
30000 to 60000 cycles. 

Data for the ratio of the vortex shedding frequency to the cylinder natural frequency 
are compared in figure 18. Synchronization is obvious and the ratiof,,/fn is slightly 
lower in Feng's experiment than in the present one. As shown in the inset expanded 
graph, this ratio increases during lock-in in the progressive regimes (except for large U 
increments, open lozenge symbols) as U increases, but this increase remains very small, 
from 0.997 to 0.999. Outside the lock-in region, the vortex shedding frequency 
coincides with f,. 

4.2. Comparison with Bishop & Hassan's results 
In their experiment, Bishop & Hassan (1964b) used the approach of forced vibrations. 
As their driving frequency was varied, which is equivalent to a variation of U, they 
found sudden changes in the lift and drag forces, accompanied by abrupt jumps in the 
phase angle between the forces and the cylinder displacement. Their system response 
was hysteretic since the critical frequencies (or U velocities) of these jumps depended 
on the vibration amplitude and the history of the motion (i.e. on whether the value of 
U was increased or decreased). 

Some of their data are presented in figures 16(c) and 17(c) for comparison. The 
conversion from their variablefto the present variable U is achieved with the identity 
U = (27cS'//f,)-' using their measured f, and a Strouhal number of 0.2 according to 
figure 9 of Bishop & Hassan (1964a). 

Figure 16(c) shows the drag force variation for decreasing and increasing excitation 
frequencies while the oscillation amplitude was maintained at A I D  = 0.403 which is 
the amplitude of the present free oscillations at the LCV. From this figure, the LCV 
is 0.87, matching that of the present study. However, the UCV have different values 
because of the difference in the oscillation amplitude (AID = 0.53 for the present 
study). 

Figure 17(c) shows the phase angle variation with U for two different amplitudes 
AID = 0.75 (circle symbols) and A / D  = 0.20 (triangle symbols). The variations are 
similar to those of the present study. The UCV is accompanied by an abrupt change 
of the phase angle by about 90°, while the LCV is accompanied by a more important 
change, of the order of 180" (by an extrapolation of the observed linear plateau). It can 
be noticed from this figure that the values of the phase @ are influenced by the 
oscillation amplitude. They increase with increasing amplitude. The present phase 
angle results, once corrected for the hot-wire location, agree qualitatively and 
quantitatively with the ones of Bishop & Hassan (19643). 

4.3. Comparison with $ow visualization studies 
Two important papers report similar flow visualization studies designed to reveal the 
details of the flow in the near wake of an oscillating rigid circular cylinder in the 
synchronization region. In both studies - Ongoren & Rockwell (1988a, b) and 
Williamson & Roshko (1988) - the rigid cylinder was forced to oscillate at given 
amplitudes and frequencies while exposed to a fixed relative waterflow velocity U. 
Ongoren & Rockwell (1988~) observed in detail the change in the timing of the vortex 
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FIGURE 18. Comparison of the vortex shedding frequency; (a) present study 

(symbols as in figure 6);  (b) Feng (1968): V, f; 0 ; fvs. 

shedding on either side of the phase jump. Williamson & Roshko (1988), in their 
interpretation of their flow visualization results also provide an explanation for the 
hysteresis loop in terms of a change in the configuration of the vortex wake. Figure 19, 
adapted from their paper, gives the boundaries of the relevant vortex configurations, 
denoted by codes 2s and 2P as mentioned earlier. Figure 19 does not include the 
regions within which superharmonic or subharmonic vortex shedding modes have been 
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FIGURE 19. Present results compared with those of Williamson & Roshko (1988): 0, increasing 
velocity; $I, decreasing velocity; 0, increasing velocity with large steps ; A, bifurcation amplitude; 
0,  bifurcation amplitude (Ferguson 1965); -, Williamson & Roshko (1988). 

found (Ongoren & Rockwell 1988a) and deals with the zones containing patterns near 
the fundamental synchronization region. In the present free vortex-induced vibrations, 
the oscillation frequency is practically the flexible cylinder natural frequency and the 
abscissa is translated in terms of Uwith the relation h / D  = 2xU, where h is the cylinder 
vibration wavelength (Vl f ) .  

The present results, superimposed in the figure, support most of the flow visualization 
results. The agreement on the definition of the ‘critical curve’, the boundary between 
2s and 2P modes, is remarkable. 

The plateau of the hysteresis lower branch obtained in the progressive regime with 
decrements of U, begins at U = 1.14, close to the boundary between the 2P mode and 
the zone where no synchronized pattern is observed and terminates at U = 0.87 or the 
LCV, which is a point on the critical curve. 

As observed for the impulsive regimes, in the range 0.78 < U < LCV, the vibration 
build-up from rest, at a fixed U can be disturbed and cease to converge towards a first 
stationary amplitude for a second stationary amplitude. In this velocity range, the 
initial vortex mode at small vibration amplitudes of the cylinder appears to be of the 
2P type. As the amplitude builds up, the boundary between 2P-2s modes, the critical 
curve, is reached and the 2s mode takes over, a manifestation accompanied by an 
abrupt change in the phase angle. For a velocity U in the same range but close to the 
LCV (see figure lo), the amplitudes of these bifurcations were recorded and their 
location (triangle symbols of figure 19) confirmed the critical curve. Ferguson (1965) 
made a similar observation of an instantaneous break in the cylinder amplitude for 
U = 0.87. His experimental result can be seen to coincide with the boundary between 
the 2s-2P modes (see the filled circle of figure 19). Around U = LCV, the ‘critical 
curve’ is almost vertical and this explains the susceptibility to a 2P --f 2s mode jump at 
several amplitudes. 

In the range 0.84 < U < 0.87, say 0.86, for an impulsive regime the cylinder with an 
17 FLM 250 
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initial AID = 0.85 excitation amplitude could undergo, according to figure 19, two 
phase angle changes, the first while moving from the 2P to the 2 s  mode at AID = 0.45 
and the second at A / D  = 0.18 switching back to the 2P mode. This phenomenon of a 
double mode jump has not been observed. Once the cylinder amplitude falls into the 
2 s  mode, natural Karmin vortex shedding prevails. This prevalence of the 2 s  mode is 
also observed for progressive regimes with small increments. At the onset of 
synchronization, the vortex pattern of the stationary vibrations corresponds to a 2s 
mode and is preserved in the 2P mode region, following the upper curve of the 
hysteresis loop as the air velocity is slowly increased. There is competition between the 
2P and 2s modes up to U = 1.01, where the 2P mode takes over as shown by a 75" 
change in the phase angle (35" in Feng's results). The coexistence of different modes 
was also observed by Ongoren & Rockwell (19886) but for a cylinder vibrating at a 
non-orthogonal angle with the flow. This coexistence takes the form of a first mode 
controlling the far wake and a second one, the near wake. As the air velocity U is 
increased, the first mode progresses upstream and finally dislodges the second mode. 

The longer build-up times required for the 2P mode to establish the stationary 
amplitudes, as observed in the present data ($3.2.2), is an indication that the 2P mode 
is the weaker of the two, a weakness associated with the lateral expansion of its wake 
and to the pairing of-smaller and opposite signed vortices. 

Comparing the wake flow patterns observed by Griffin & Ramberg (1974), Ongoren 
& Rockwell (1988~) and Williamson & Roshko (1988) with the present photographs 
shown in figure 15, it is interesting to note that the Reynolds number of the present 
tests (Re = 7350) introduces turbulent characteristics superimposed over the more 
regular patterns obtained at lower Reynolds numbers. Nevertheless, the 2s  and 2P 
modes can be clearly recognized and the earlier explanation suggested by Williamson 
& Roshko for the hysteresis loop in terms of a change in the wake vortex patterns is 
confirmed. 

5. Conclusions 
An experimental investigation of the free vortex-induced vibrations of a long flexible 

circular cylinder with a low damping ratio shows that the cylinder steady response is 
hysteretic as the flow velocity is varied, and that the hysteresis is a fluid-mechanic 
phenomenon. 

The hysteresis loop is characterized by two branches and, as shown by flow 
visualization, each branch is associated with a particular vortex shedding mode and 
delimited by a discontinuity featuring a jump to the other branch. The upper branch 
obtained by small progressive increments of the flow velocity and extending from the 
onset of synchronization (U  = 0.78) to the upper critical velocity (U = 1.01) is 
associated with the von KArmkn type wake or the 2s mode of vortex shedding 
suggested by Williamson & Roshko (1988). The lower branch of the hysteresis is 
obtained either by progressive decrements of the flow velocity or by releasing the 
cylinder from rest under a fixed flow velocity. The lower branch covers a velocity range 
extending from a lower critical velocity (U = 0.88) to the end of synchronization (U = 
1.2) and is associated with the 2P mode in which two vortices of opposite sign are shed 
from each side of the cylinder at every vibration cycle (Williamson & Roshko). The 2P 
mode is also the final regime for the range 0.96 < U < 1.2 if the cylinder is pumped to 
a high amplitude and then released. Over a narrow range (0.88 < U < 0.96) and for 
this particular impulsive regime, the cylinder is observed to stabilize on either one of 
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the two branches. The probability of the existence of the 2s mode decreases as U 
increases. 

The results of the present study agree partially with those obtained by Feng (1968). 
With different damping ratios but almost identical Scruton numbers, the maximum 
steady vibration amplitude is of the same order, while the synchronization covers a 
larger velocity range, and the hysteresis loop covers a velocity range twice as large. In 
the study by Bishop & Hassan (196423) and the present one, a jump in the phase angle 
of the order of 7c occurs at the same lower critical velocity and another jump of the 
order of $I at the upper critical velocity. 

For fluid velocities less than the lower critical velocity, where a 2P --f 2s mode jump 
appears, the cylinder oscillation amplitude grows as it is released from rest towards a 
first stationary amplitude and then bifurcates towards a second stationary amplitude. 
The amplitudes of the bifurcation occurrence coincide with the critical curve separating 
the 2s mode and 2P mode regions defined by Williamson & Roshko. The bifurcation 
is accompanied by a sudden change of the phase angle between the fluid excitation and 
the cylinder displacement. A flow visualization confirms that the initial 2P mode of 
vortex shedding jumps to a 2s mode as this bifurcation takes place. 
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and Engineering Research Council of Canada and the Education and Scientific 
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